

16THINTERNATIONAL

SYMPOSIUM ON CAROTENOIDS

17-22 JULY 2011, KRAKOW

האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem

A JOURNEY ALONG THE PATHWAY OF CAROTENOID BIOSYNTHESIS: MORE ENZYMES AND NEW ROUTES OF INTERACTIONS WITH PLANT METABOLISM

Joseph Hirschberg

Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem

The carotenoid pathway (ca. 1990)

Discovery of carotenoid pathways in bacteria

Rhodobacter capsulatus Armstrong et al. (1989)

Erwinia uredovora

Cloning genes through inhibitor resistance

Isolating norflurazon-resistant mutations in *Synechococcus* 7942

Chamovitz et al. 1990

Phytoene desaturase in plants

Pecker et al. 1992

Cloning genes by color complementation

Construction of a cDNA library from the carotenoid-producing tissue in the vector λ ZAP II

Excision of plasmids in pBluescript vector

Transfection of plasmids into *E. coli* cells that produce a carotenoid precursor

Screening for a colored colony

Lotan & Hirschberg 1995

The genetic approach

1. Map-based ("positional") cloning of mutations Arabidopsis, Tomato, Rice

2. Genomics

Sequence-based candidate genes Gene expression profiles (transcriptomics)

Classic Biochemistry: Capsanthin-capsorubin synthase (CCS)

The plant carotenoid pathway, 2011

TL NT TXTL(D) (10210 1/12, 10/3 (12, Bib 1/2, Jili 6)501 21/2 1/10/10 01/01/2 4/10, PARIS, 12/2 1/01/10

Cairns, 1999

The genetic approach: Map-based cloning

New mutations isolated in the line M82

Navot Galpaz, Naama Menda, Dani Zamir

The tomato introgression lines (IL)

Unique chromosomal segments from *S. pennellii* were introduced in to the genome of *S. lycopersicum*.

The tomato genome:

~750 cM

Size: 950 Mb

Map:

S. pennellii

S. lycopersicum

Eshed & Zamir, 1995

Carotenoid biosynthesis is genetically regulated

Gene expression during "Breaker"

Pecker et al. 1996

Carotenoid biosynthesis is genetically regulated

Gene expression during "Breaker"

Ronen et al. 1999

Carotenoid biosynthesis is genetically regulated

Gene expression during "Breaker"

Ronen et al. 2000

Fruit-carotenoid-deficient (Fcd) mutants

Fruit-carotenoid-deficient (Fcd) mutants

Map-based cloning of Fcd1

- 1. Crossing Fcd1 (M82) X IL4-2 (S. pennellii).
- 2. F1 selfing.
- 3. 5000 F2 seedlings genotyped with markers Tg182 and Tg208.
- 4. 486 genetic recombinant plants identified, grown and phenotyped.
- 5. Genetic locus fine-mapped with new DNA markers
- 6. Candidate gene identified.

Fcd1 encodes IPP isomerase (IDI)

- MSLTTASASLQFLRRFIASPITSHSSLRLPKSSLLPNNTL
 41 PVSSLRCRFRCYSAASTTTMADAISDANMDAVQRRLMFED
 81 ECILVDENDHVVGHDTKYNCHLMEKIEAENLLHRAFSVFI *Fcd1-1
 121 FNSKYELLLQQRSATKVTFPLVWTNTCCSHPLYRESELIE
 161 ENSLGVRNAAQRKLLDELGIPGEDVPVDQFIPLGRILYKA ΔFcd1-2
- 201 PSDGKWGEHELDYLLFMVREVNMKPNPDEVAEVKYVNREQ
- 241 LKELLRKADAGEEGLKLSPWFRLVVDNFLFKWWDHLEKGT

281 LKEVIDMKTIHKLT

Fcd1-1: W143 stop *Fcd1-2*: W206 Δ

Two IDI enzymes exist in plants

DMAPP

Two IDI enzymes exist in tomato

Do plastids need IDI?

Do plastids need IDI?

Mutants in Arabidopsis lacking IDI1 do not show a clear phenotype.

Okada et al. (2008) Plant Cell Physiol. 49:604; Phillips et al. (2008) Plant Cell, 20:677.

"Mutants specifically defective in IDI1 do not show changes in carotenoid levels, consistent with the dispensable role of this enzyme in plastids."

Rodriguez-Concepcion, M. (2010) Arch. Biochem. Biophys. 504:118-122.

No apparent phenotype in leaves of Fcd1-1

Expression of carotenoid genes in Fcd1 fruit

Differential expression of Idi1 and Idi2

Stages in fruit development: MG- mature green; B- breaker; R- ripe

Specific inhibition of IPP biosynthesis

Inhibition of cytoplasmic IPP synthesis in seedlings

Inhibition of cytoplasmic IPP synthesis in fruit

Inhibition of plastidial IPP synthesis in fruit

IDI1 is required in cotyledons

Carotenoids

IDI1 is required during deetiolation

Etiolated seedling (14 days dark)

Carotenoid accumulation

140 M82 Fcd1-1 120 Fcd1-2 100 Toatl carotenoids [µg g⁻¹ FW] 80 60 40 20 0 20 30 Ö 10 40 50 Hours after exposure to light

Chlorophyll accumulation

Reduced yield in Fcd1 mutants

Alterations in fruit volatiles in Fcd1

Headspace solid phase micro-extraction GC-MS (SPME-GC-MS)

IDI1 regulates isoprenoid production by adjusting the IPP:DMADP ratio

Conclusions from *Fcd1* characterization

- There are two IPP isomerase enzymes in tomato-IDI1 in the plastids and IDI2 in the cytoplasm.
- IDI2 is mainly expressed in vegetative tissues and is probably dispensable during fruit ripening.
- Fcd1 impairs the plastidial IPP isomerase (IDI1).
- Cytoplasmic IPP does not contribute to carotenoid biosynthesis.
- IDI1 is required to adjust the ratio of IPP:DMAPP in cases of high flux of isoprenoids toward GGPP, such as during carotenoid accumulation in chromoplasts and carotenoid and chlorophyll biosynthesis in developing leaves.

The mutant zeta (z) accumulates ζ -carotene

wt (M82) z-1

wt (M82)

Zeta impairs the 15-cis ζ -carotene isomerization

HPLC analysis of fruit carotenoids

Light-driven isomerization of ζ -carotene in *zeta* leaves

Chen Gafni-Amsalem

Photosynthesis-generated redox compensates for the mutation *zeta*

Carotenoid in roots of zeta plants

A Ziso-like gene exists in cyanobacteria

		1 60
Ziso 7942	(1)	
Ziso M82 f	(1)	MATSIFLSHPFSHLLSKHHKIPSPKQTIAIAYHSTNKPTTKTPFLPLPTSFFPFPSNPRK 61 120
Ziso 7942	(1)	
Ziso M82 f	(61)	EFWPISVGRTQTDEKDEILVVGEDSAEFELSKQKISSWVYFAGVLGVVLYVLNVVWIDNS 121 180
Ziso 7942	(1)	MPLSWWTPSHTIMLALLLFAIAHSGLAALRPWGETKIGARGYRILFALVS
Ziso M82 f	(121)	TGFGKSFIDSVS <mark>S</mark> ISDSPEI <mark>VMLSLTLIFAI</mark> VHSGLASLRDK <mark>GE</mark> EL <mark>IG</mark> ERAFRVLFAGVS 181
Ziso 7942	(52)	LPLAVVTISYFILHRYDGALLWQLQGIPWIAPLVWVLTAISFLLLYPATFNLLEIAAIAQ
Ziso M82 f	(181)	LPLAVSTIVYFINHRYDGVQLWQLNSVAGIHELVWISNFVSFFFLYPSTFNLLEVAAVDK 241 300
Ziso 7942	(112)	PQVRLYETGITRITRHPQTFGQILWCLAHSLWLGTSFMMVASAGLIAHHLFSIWHGDRRL
Ziso M82 f	(241)	PKMHLWETGIMRITRHPQLVGQVIWCLAHTLWIGNSVAVAASVGLIGHHLFGAWNGDRRL 301
Ziso 7942	(172)	QK <mark>RYGEAFE</mark> ALKS <mark>RTSIIPF</mark> LAIAQGKQTLVWKEFLRPAYLGVAIAIGLFWFAHRWIPQA
Ziso M82 f	(301)	AI <mark>RYGEAFE</mark> VVKNRTSIIPFAAILDGRQKLPEDYYKEFIRLPYLSITTLTLGAYFLHPIM 361
Ziso 7942	(232)	TAALAEIGW
Ziso M82 f	(361)	Q <mark>AA</mark> SYRLH <mark>W</mark>

ZISO is a 15-cis-ζ-carotene in cyanobacteria

Knockout of *Ziso* in *S. elongatus* PCC7942

Carotenoid composition in *S. elongatus* PCC7942

Varda Mann

Ziso in cyanobacteria is part of a "redox operon"

Location of zisO in the genome of S. elongatus PCC7942

A tomato mutant deficient of NDH-M

Nashilevitz et al. The Plant Cell, 2010

A mutation in subunit M of NAD(P)H oxidoreductase provided evidence that specialized (secondary) metabolism in tomato fruit, including carotenoid biosynthesis, depends on the complex activity that modulates the redox state of PQ.

Orr^{Ds}/ORR ORR/ORR

Expression of Ziso is upregulated during fruit ripening

Relative mRNA of *Ziso* was determined in fruits of M82 and two alleles of *zeta*.

Stages in fruit development. SG, small green; MG, mature green; B, Breaker; O, orange; R, ripe.

Conclusions on Ziso

- ZISO is a trans-membrane protein, possibly a transporter, that provides a redox-related functions essential for *cis-trans* isomerization of 15,15' ζ-carotene.
- Photosynthetic redox can compensate for ZISO deficiency.
- ZISO is indispensable in non-photosynthetic tissues (fruit, flower, root).
- ZISO underscores the involvement of redox in plastid secondary metabolism.

Open questions in carotenoid biosynthesis

1. Biochemistry

- Mechanism of reactions (structure-function)
- Do enzyme function in complexes?
- Where exactly in the plastids?

2. Regulation

- Gene expression (developmental; environmental)
- Metabolic regulation at the enzymatic level
- Interaction with other metabolic pathways

Acknowledgements

Lab members Shdema Filler Halim Jubran Varda Mann Hadar Neuman Ilya Pankratov Jochanan Schwartz Oori Weisshaus Ohad Yogev

<u>The Hebrew University</u> Dani Zamir

Naama Menda

<u>Albert-Ludwigs University Freiburg</u> Peter Beyer

<u>CUNY, Lehman College</u> Eleanore Wurtzel

<u>MPIMP, Potsdam</u> Sonia Osorio-Algar Alisdair Fernie

<u>UC San Diego</u> Susan Golden

Weizmann Institute, Rehovot Asaph Aharoni

Supported by: Israel Science Foundation; EU-SOL (EU-FP6); GIF Avron Minerva Center on Photosynthesis