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Carotenoids are essential for the survival of photosynthetic organisms [1-6].  They act as 

protective devices against irreversible photodestruction of the photosynthetic apparatus either by 

quenching chlorophyll (Chl) triplet states which prevents the Chl-sensitized formation of singlet 

state oxygen, a major oxidizing agent of Chl [7-9], by scavenging singlet oxygen directly 

[10,11], or by dissipating excess excitation energy beyond that which is required for 

photosynthesis [12-15]. Besides acting as photoprotectors of the photosynthetic apparatus, 

carotenoids function in several other capacities:  (1) As light-harvesting pigments supplementing 

the light capturing ability of Chl in regions of the visible spectrum where Chl is not a very 

efficient absorber [16-20]. Carotenoids then transfer this energy to Chl and ultimately the 

excitation is trapped in the reaction center (RC) pigment-protein complex where it initiates a 

sequence of electron transfer events [21,22]; (2) As stabilizers of protein structure and facilitators 

of assembly of pigment-protein complexes [23-25]; (3)  As regulators of energy flow - the 

mechanism by which this occurs is not yet fully understood, but it may involve energy transfer 

[26,27], electron transfer [15,28], or some other process that exerts control over the population of 

Chl excited singlet states [12,25,29-42].  (4) As redox cofactors [43] - investigations have shown 

that carotenoids function as electron donors in various pigment-protein complexes [44-48]. 

 Considerable progress has been made in recent years in determining the structures of 

carotenoids in pigment-protein complexes.  This has come about due to significant 

improvements in the procedures for the isolation, purification and biochemical characterization 
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of the proteins, and to advances in the techniques for the crystallization and X-ray diffraction 

analysis of carotenoid-containing RC and antenna pigment-protein complexes.  Studies on 

several purple photosynthetic bacteria [49-70], cyanobacteria [71-75], and algal systems [76] 

have located the protein-bound carotenoid molecules relative to the (bacterio)chlorophyll 

((B)Chl) pigments.  Light-harvesting complexes that have been investigated include LH1 [67] 

and LH2 [60] from photosynthetic bacteria, LHCII from higher plants [75,77] and the peridinin-

Chl-protein (PCP) complex from the dinoflagellate, Amphidinium carterae [76].  In addition, X-

ray crystallographic investigations of Photosystems I (PSI) and II (PSII) have established the 

structures of some core antenna proteins associated with these RCs [72-74].  Yet, the structural 

aspects of carotenoids important in controlling their function still have not been clarified.  This is 

because the complexes whose structures have been determined are very diverse and display 

many different structural motifs making it difficult to draw any generalizations regarding the 

function of carotenoids in these complexes.  The reasons for the variability in efficiency are 

largely unknown, but depend on factors such as the conformation of the carotenoid, the nature 

and position of its excited states relative to (B)Chl, the orientation of the carotenoid with respect 

to (B)Chl, the distance between the carotenoid and (B)Chl, spectral overlap, and the dynamics of 

the participating states [60,65,78].  Several more studies will be needed before any general 

relationships between the carotenoid structures and biological functions emerge, and this is a 

major focus of activity by scores of research groups around the world.  It is also hoped that 

lessons learned from studies on photosynthetic organisms will aid in the design of new and 

improved devices for efficiently harvesting and converting solar energy into electrical and 

chemical potential for powering our planet. 
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